Linear Motion Blur Parameter Estimation in Noisy Images Using Fuzzy Sets and Power Spectrum
نویسندگان
چکیده
Motion blur is one of the most common causes of image degradation. Restoration of such images is highly dependent on accurate estimation of motion blur parameters. To estimate these parameters, many algorithms have been proposed. These algorithms are different in their performance, time complexity, precision, and robustness in noisy environments. In this paper, we present a novel algorithm to estimate direction and length of motion blur, using Radon transform and fuzzy set concepts. The most important advantage of this algorithm is its robustness and precision in noisy images. This method was tested on a wide range of different types of standard images that were degraded with different directions (between 0◦ and 180◦) and motion lengths (between 10 and 50 pixels). The results showed that the method works highly satisfactory for SNR > 22 dB and supports lower SNR compared with other algorithms.
منابع مشابه
Pattern Recognition in Blur Motion Noisy Images using Fuzzy Methods for Response Integration in Ensemble Neural Networks
Linear Blur Motion is one of the most common degradation functions that corrupt images. Since 1976 many researchers have tried to estimate blur motion parameters and this problem can be solved for noise free images but in the case of noisy images this can be done when the image SNR is low. In this paper, we consider pattern recognition with ensemble neural networks for the case of fingerprints;...
متن کاملImproving Super-resolution Techniques via Employing Blurriness Information of the Image
Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...
متن کاملAdvances in Total Variation Image Restoration: Blur Estimation, Parameter Estimation and Efficient Optimization
This thesis addresses total variation (TV) image restoration and blind image deconvolution. Classical image processing problems, such as deblurring, call for some kind of regularization. Total variation is among the state-of-the-art regularizers, as it provides a good balance between the ability to describe piecewise smooth images and the complexity of the resulting algorithms. In this thesis, ...
متن کاملEstimation of 2-D noisy fractional Brownian motion and its applications using wavelets
The two-dimensional (2-D) fractional Brownian motion (fBm) model is useful in describing natural scenes and textures. Most fractal estimation algorithms for 2-D isotropic fBm images are simple extensions of the one-dimensional (1-D) fBm estimation method. This method does not perform well when the image size is small (say, 32x32). We propose a new algorithm that estimates the fractal parameter ...
متن کاملEstimation of D Noisy Fractional Brownian Motion and its Applications using Wavelets
The D fractional Brownian motion fBm model is useful in describing natural scenes and textures Most fractal estimation algorithms for D isotropic fBm images are simple extensions of the D fBm estimation method This method does not perform well when the image size is small say We propose a new algorithm that estimates the fractal parameter from the decay of the variance of the wavelet coe cients...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007